

Proptosis in Acute Myeloid Leukemia: An Under Recognized Presentation of Hematological Malignancy

Tanzeela Farah¹, Sumaira Khalil¹, Tariq Ghafoor¹, Muhammad Tahir¹, Awais Arshad¹

Leukemia is the most common hematological malignancy in children¹. Among all pediatric leukemia patients, 18% present with acute myeloid leukemia (AML)². acute myeloid leukemia (AML). Fifty percent of all the pediatrics leukemia deaths have been attributed to AML with the survival rate of 64% in developed countries like United States³. Patients diagnosed with AML are extremely unfortunate as it not only exhausts the patient and their families physically and mentally but also have high financial implications. In the past AML was a difficult affliction to treat, but the treatment outcomes of pediatric AML have improved with advances in chemotherapy, hematopoietic stem cell transplantation and supportive care⁴. AML usually presents with systemic manifestations like blood dyscrasias and fever, but it can rarely present with extramedullary granulocytic sarcoma also known as myeloid sarcoma (MS)⁵. One of the most common sites of MS is the orbit which is also known as orbital granulocytic sarcoma (OGS) and can presents clinically as unilateral or bilateral proptosis⁶. This study was conducted to find out the frequency and associations of proptosis with demographic, clinical and hematological characteristics in children with AML.

Methodology

Results

TABLE I: Demographic and clinicopathological data of patients with orbital granulocytic sarcoma.

Variable	With Proptosis		Without Proptosis		P Value
	Frequency (%)	Frequency (%)	Frequency (%)	Frequency (%)	
Age distribution	13 (8.20)	82 (41.8)	95 (41.3)		0.406
	11 (12.4)	76 (38.8)	87 (37.8)		
Gender distribution	10 (29.4)	38 (19.4)	28 (20.9)		0.584
	Males	23 (67.6)	123 (62.8)	146 (63.5)	
WBC count (cells/mm ³)	11 (32.40)	73 (17.2)	84 (36.5)		0.136
	<50,000	26 (76.5)	124 (63.3)	150 (65.2)	
Types of AML (FAB classification)	>50,000	8 (23.5)	72 (36.7)	80 (34.8)	0.001*
	AML M2	26 (76.5)	76 (38.8)	102 (44.3)	
Total	34 (100)	196 (100)	230 (100)		

TABLE II: Systemic manifestation in patients with and without proptosis (n=217).

Systematic Manifestation	Proptosis			P-Value
	Yes (%)	No (%)	Total (%)	
Fever	20 (58.8)	153 (83.6)	173 (79.7)	0.001*
	12 (41.2)	30 (16.4)	44 (20.3)	
Pallor	23 (67.6)	164 (89.6)	187 (86.2)	0.001*
	11 (32.4)	19 (10.4)	30 (13.8)	
Bruising	7 (20.6)	84 (45.6)	91 (41.7)	0.007*
	27 (79.4)	99 (54.4)	126 (58.3)	
Bleeding	3 (8.8)	40 (21)	43 (19.1)	0.095
	31 (91.2)	143 (79)	174 (80.9)	
Lymphadenopathy	6 (17.6)	46 (24.7)	52 (23.6)	0.372
	28 (82.4)	137 (75.3)	165 (76.4)	
Bone Pains	5 (14.7)	29 (15.4)	34 (15.3)	0.92
	29 (85.3)	154 (84.6)	183 (84.7)	
Total	34 (100)	183 (100)	217 (100)	

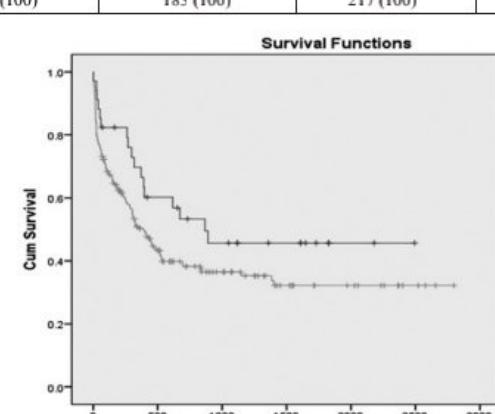


Figure 1: Kaplan Meier analysis curve

Introduction

In this study it was found that proptosis has a significant association with AML as 14.78% of our patients were found to have it. Proptosis presented not only with systemic features but also as an isolated phenomenon and can precede the onset of systemic AML. Presence of OGS with AML was found to be a **better prognostic** sign as median duration of survival in patients with OGS was found to be 867 days as compared to the 353 days in patients without OGS.

GS is a known association of AML reported in 2.5-9.1% of patients in literature.⁹ These are tumors of immature hematopoietic precursor cells of granulocytic series which are localized in extra medullary tissues. Histological identification and diagnosis of these tumors in children is difficult and can easily be misinterpreted as malignant lymphomas or other common poorly differentiated pediatrics tumors like neuroblastoma and rhabdomyosarcoma especially when they precede the development of systemic leukemia.¹⁰

Proptosis is a frequent finding in children with AML. AML-M2 is associated with proptosis in children with AML.

Proptosis is an important sign of AML. Even in absence of systemic features patient should be promptly investigated for AML as proptosis can present as an isolated finding. This would require tissue biopsy and immunohistochemistry to prove or rule out AML. Median age of presentation with GS in our study is 7 years compared to 11.6 months in patients as compared to other literature where age of presentation in pediatric population is between 6-8.8 years.

In our study male predominance was observed versus other studies that have reported female preliefiction.

Cytogenetic abnormalities in our study associated with AML M2 (most common subtype) WAS t(8,21) responsible for AML ETO fusion, a finding found consistent during other literature review as well. t(8,21) is considered to be a good prognostic sign in some studies. Overall survival of AML in our study was 50% which was lower than COG report where OS was 92%. Median duration of survival in our study in patients with OGS was 28.5 months compared to 11.6 months in patients of AML without OGS, showing better survival associated with OGS whereas other studies show GS as a less favorable prognostic sign in AML associated with poor disease outcome, low remission rate overall survival and increased chance of relapse. It is recommended that proptosis is an important sign of AML, even with no systemic features patient should be promptly investigated to rule out AML.

Acknowledgment

We would like to acknowledge and appreciate Associate Prof. Dr Ume Sughra, Public Health Specialist, Pakistan Institute of Ophthalmology for her help in statistical analysis.

References

- Metayer C, Dahl G, Wiemels J, Miller M. Childhood leukemia: a preventable disease. *Pediatrics* 2016;138 (Suppl 1):S45-S55. <https://doi.org/10.1542/peds.2015-4268H>.
- Hossain MJ, Xie L, Caywood EH. Prognostic factors of childhood and adolescent acute myeloid leukemia (AML) survival: evidence from four decades of US population data. *Cancer Epidemiol* 2015;39(5):720-6. <https://doi.org/10.1016/j.cancep.2015.06.009>.
- Taga T, Tomizawa D, Takahashi H, Adachi S. Acute myeloid leukemia in children: Current status and future directions. *Pediatr Int* 2016;58(2): 71-80. <https://doi.org/10.1111/pedi.12865>.
- Linabery AM, Ross JA. Trends in childhood cancer incidence in the U.S (1992-2004). *Cancer* 2008;112 (2):416-32. <https://doi.org/10.1002/cncr.23169>.
- Avin B, Koren M, Michowitz M. Myeloid sarcoma: current approach and therapeutic options. *Ther Adv Hematol* 2011;2(5):309-16. <https://doi.org/10.1177/2040620711410774>.
- Nob BW, Park SW, Chun JE, Kim JH, Lim MK. Granulocytic Sarcoma in the Head and Neck: CT and MR Imaging Findings. *Clin Exp Otorhinolaryngol* 2009;2(2):66-71. <https://doi.org/10.3342/ceo.2009.2.2.66>.
- Yilmaz AF, Saydam G, Sahin F, Baran Y. Granulocytic sarcoma: a systematic review. *Am J Blood Res* 2013;3(4):265-70.
- Abdalla AM, Abdellatif MA, Elhawy AM. Paediatric orbital tumours in Upper Egypt: A 3-year retrospective analysis at a university hospital. *J Clin Ophthalmol* 2019; 3 (1): 105-18. <https://doi.org/10.35841/clinical-ophthalmology.3.1.108-120>.
- Aggarwal E, Mulay K, Honavar SG. Orbital extra-medullary granulocytic sarcoma: clinicopathologic correlation with immunohistochemical features. *Surv Ophthalmol* 2014;59(2):232-5. <https://doi.org/10.1016/j.survophthal.2013.06.004>.
- Murthy R, Venuganti GK, Honavar SG V, Nair A, M, Reddy D, V. Extramedullary leukemia in children presenting with proptosis. *J Hematol Oncol* 2009;2:4. <https://doi.org/10.1186/1756-8722-2-4>.
- Stock FA, Dolmetsch AM, Saormil MA, Font RL, Burnier MN Jr. Orbital granulocytic sarcoma. *Br J Ophthalmol* 1997;81(12):1084-8. <https://doi.org/10.1136/bjophthalmol.1997.81.12.1084>.
- Cavdar AO, Arcasoy A, Babacan E, Gozdapoglu S, Topuz U, Fraumeni JF Jr. Ocular granulocytic sarcoma (chloroma) with acute myelomonocytic leukemia in Turkish children. *Cancer* 1978;41(4):1606-9. [https://doi.org/10.1002/1097-0434\(19780414\)41:4<1606::AID-CNCR2820410451>3.0.CO;2-Y](https://doi.org/10.1002/1097-0434(19780414)41:4<1606::AID-CNCR2820410451>3.0.CO;2-Y).
- Panda A, Sudar R, Nainiwala S. Childhood proptosis. The invaluable but overlooked peripheral blood smear. *Indian J Ophthalmol* 2002;50(3):247.
- Cywinkiewicz CW, Ho CS, Chiu NC, Liu HC, Liang DC. Acute myeloid leukemia with initial presentation of facial palsy and exophthalmos. *Acta Neurol Taiwan* 2016;25(1):18-20.
- Zi m e r m a n L E, F o n t R L. Ophthalmologic manifestations of granulocytic sarcoma (myeloid sarcoma or chloroma). The third Pan American Association of Ophthalmology and National Organization of Ophthalmology Lecture. *Am J Ophthalmol* 1975;80(6):975-90.
- Bidar M, Wilson MW, Laquis SJ, Wilson TD, Fleming JC, Wesley RE, et al. Clinical and imaging characteristics of orbital leukemic tumors. *Ophthalmic Plast Reconstr Surg* 2007;23(2):87-93. <https://doi.org/10.1097/IOP.0b013e3180333a85>.
- Gözdapoglu S. Remarks on myeloid sarcoma in children. *Turk J Haematol* 2019; 36 (2): 122 - 3. <https://doi.org/10.4274/tjh.galenos.2019.2019.0002>.
- Schwyzer R, Sherman GG, Cohn RJ, Poole JE, Willem P. Granulocytic sarcoma in children with acute myeloblastic leukemia and t(8,21). *Med Pediatric Oncol* 1998;31(3):144-9. [https://doi.org/10.1002/\(SICI\)1098-0313\(199803\)31:3<144::aid-mpo3>3.0.co;2-b](https://doi.org/10.1002/(SICI)1098-0313(199803)31:3<144::aid-mpo3>3.0.co;2-b).
- Felice MS, Zubizarreta PA, Alfaro EM, Gallego MS, Cygler AM, Rosso AD, et al. Good outcome of children with acute myeloid leukemia and t(8,21)(q22;q22), even when associated with granulocytic sarcoma: a report from a single institution in Argentina. *Cancer* 2000;88(8):1939-44.
- Ohanian M, Faderl S, Ravandi F, Pemmaraju N, Garcia-Manero G, Cortes J, et al. Is acute myeloid leukemia a liquid tumor? *Int J Cancer* 2013;133(3):534-43. <https://doi.org/10.1002/ijc.28012>.
- Johnston DL, Alonso TA, Gerbing RB, Lange BJ, Woods WG. Superior outcome of pediatric acute myeloid leukemia patients with orbital and CNS myeloid sarcoma: a report from the Children's Oncology Group. *Pediatr Blood Cancer* 2012;58(4):519-24. <https://doi.org/10.1002/pbc.23201>.
- Bisschop MM, Révész T, Bierings M, van Weerden JF, van Wering ER, Hahlen K, et al. Extramedullary infiltrates at diagnosis have no prognostic significance in children with acute myeloid leukaemia. *Leukemia* 2001;15(1):46-9. <https://doi.org/10.1038/sj.leu.2401971>.
- Gözdapoglu S, Yavuz G, Unal E, Taczyldz N, Cavdar AO. Orbital granulocytic sarcoma and AML with poor prognosis in Turkish children. *Leukemia* 2002;16(5):962-3. <https://doi.org/10.1038/sj.leu.2402449>.
- Kobayashi R, Tawa A, Hanada R, Horibe K, Tsuchida M, Tsukimoto I. Japanese childhood AML cooperative study group. Extramedullary infiltration at diagnosis and prognosis in children with acute myelogenous leukemia. *Pediatr Blood Cancer* 2007;48(4):393-8. <https://doi.org/10.1002/pbc.20824>.
- Cuthbertson DW, Purnia JN, Owczarczak V. Myeloid sarcomas of the head and neck in pediatric patients with myeloid leukemia. *Ear Nose Throat J* 2016;95(9):405-7. <https://doi.org/10.1177/001606001660950902>.